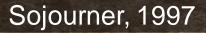
Autonomous Driving: And the Impact of People, Process & Technology

WIND

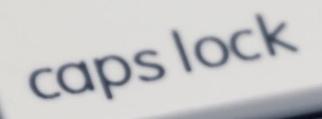
Marques McCammon Automotive Solutions July 16, 2015

Roadmap to Autonomy


For more than 30 years, when industry sets out to build something that must work, they've turned to Wind River

Pedigree

Spirit/Opportunity, 2004


Curiosity, 2012

WIND

© 2015 Wind River. All Rights Reserved

Wind River has been a part of <u>every</u> Mars Lander since 1997

change

0

(ഗ്ല)

r. All Rights Reserved.

WIND

alt

Mars Teams

NASA/JPL

+ Academia

+ Industry (component)

+ Silicon Valley

Disaggregate supply chain

Shift to systems integration

Inter-corporate Design and Release

Technology - Moore's Law

Computingpower

 $\mathbf{\Lambda}$

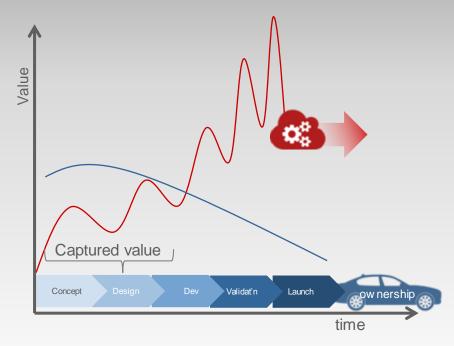
Cyber Security

High Performance Computing

Vehicle Safety & Regulation

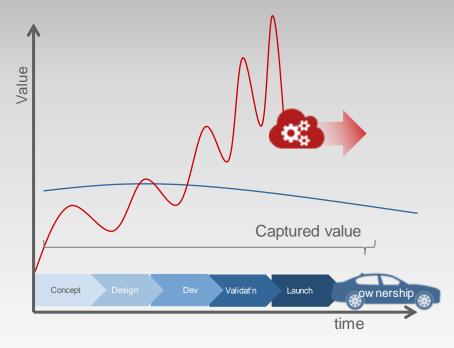
Consumer Electronics

WIND


Automotive Industry

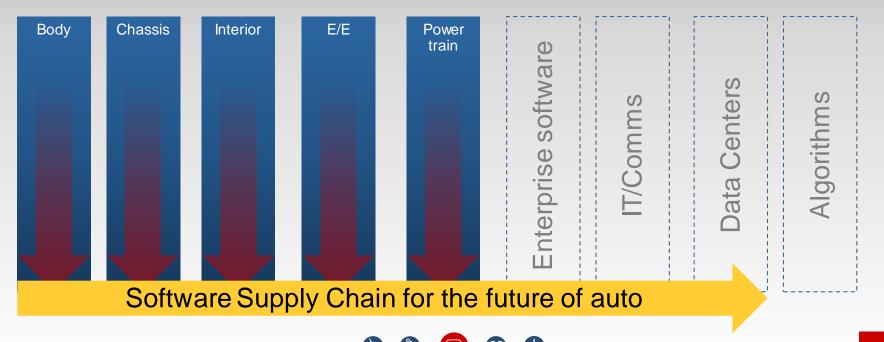
Digital Consumerism

Key Questions?

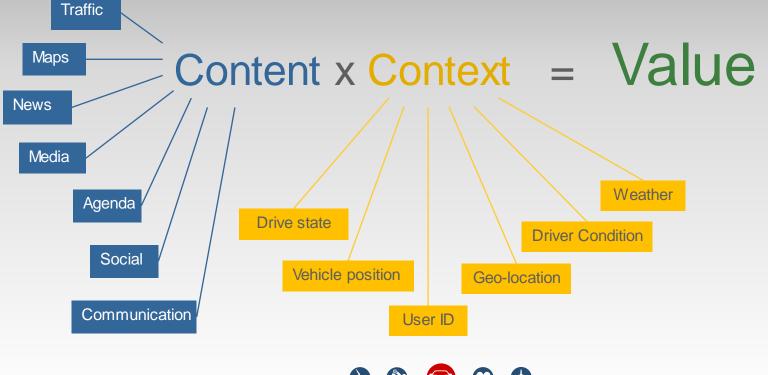

- What is the model for software in the future of Automotive?
- How is the ownership divided?
- Where does the value live?
- Can Automotive move at the pace of innovation?
- How will the fundamental business of Automotive change?
- How do you protect the consumer and enable the consumer at the same time?
- Who accepts the risks?
- How do you make money?

The Goal: Automotive Software Integration at the Speed of Innovation

Automotive development cycles are grossly out paced by the speed of software innovation leaving cars obsolete even before they are shipped


The Goal: Automotive Software Integration at the Speed of Innovation

Automotive needs a mechanism to capture the increasing software value across the vehicle lifecycle without creating risk to the function of the underlying architecture


New Supply Models

Conventional Supply Chain Alignment

...organizations which design systems ... are constrained to produce designs which are copies of the communication structures of these organizations

Melvin Conway

14 © 2015 Wind River. All Rights Reserved

WIND

CHALLENGES AHEAD

Bottom line:

1. Cost 2. Speed 3. Extensibility 4. Risk Management 5. Innovation

WIND

Ø 🕞 🔂 🖗 🔇

The Era of Autonomous Driving... and its Implications for Electronics System Designers

Wind River Webinar, July 15, 2015

Michael Hendricks, Automotive & Consumer PLM Clive Davies, Automotive System Architect

Automotive Electronics

- Electronic proliferation in vehicles creating a boom market for automotive semiconductors
 - In 2005 electronics comprised 15 percent total cost of vehicle*
 - In modern hybrid vehicles electronics represent 45 percent of cost*
 - Up to 50 percent of standard vehicles in near future
 - Up to 80 percent of hybrids in near future
- Processing requirements skyrocket
 - Up to 100 electronic control units (ECUs) in today's vehicles
 - Trend toward sensor fusion and ADAS centralized architectures
 - Processor performance in vehicles to increase 100x by 2024
- < Software complexity

© 2015 Altera Corporation—Public

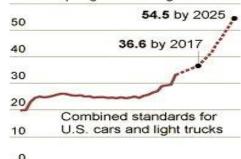
- Modern premium automobiles now have ~100 million lines of code

What is Driving Electronics Growth in Automotive?

< Consumer Demand

- Audi's electronics enabled features responsible for \$9,600 increase in average transaction prices for Audi U.S. over last five years
 - "Our cars are the grandest and most beautiful electronic devices on the planet," Prof. Dr. Ulrich Hackenberg, Audi Board Member Tech Development

Audi Digital Instrument Cluster


< Safety

- 1.2 million road fatalities each year
- 90% caused by human error

New Goals in Fuel Economy

60 miles per gallon average fleetwide

'80 '85 '90 '95 '00 '05 '10 '15 '20 '25

Source: National Highway Traffic Safety Administration

< Efficiency / Environment

- "A hybrid electric vehicle demands ten times more semiconductor content in powertrain"
 - Ahad Buksh, IHS analyst, automotive semiconductors

Automotive Mega Trends & Key Requirements

Cockpit Evolution

• Why FPGA:

- Special feature / function
- IO expansion
- Video connectivity

Self-Driving Car Camera, Radar, Laser

EV / Powertrain

BMS, Motor Control, ECU

Real-time parallel processing

Faster control loops

Enables better motors

Why FPGA:

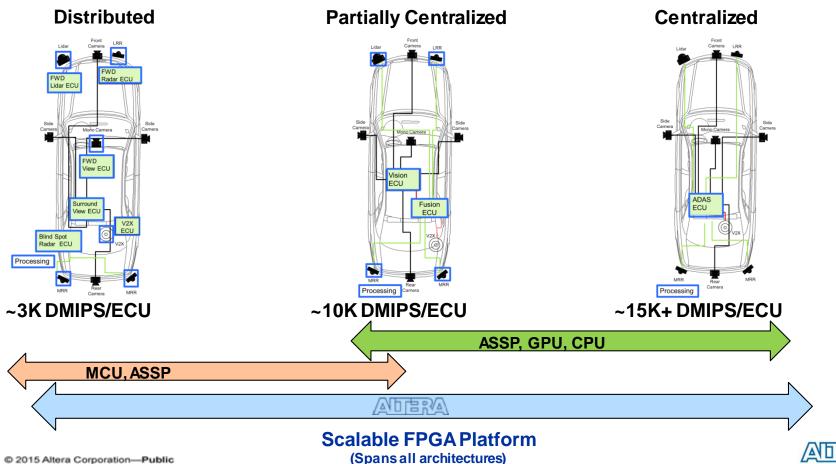
EV & Powertrain

Why FPGA:

- Evolving algorithms
- Performance / Watt
- Differentiation vs. ASSP
- Scalability

150 26262 Functional Safety

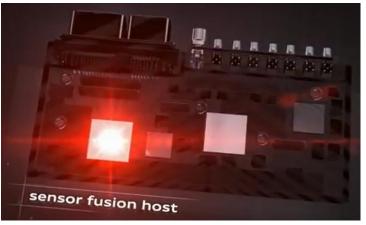
Video & Vision Processing


ADAS

SW Development Flows

Infotainment & Driver Information

ADAS Architecture Trends – Scalable Platform Required

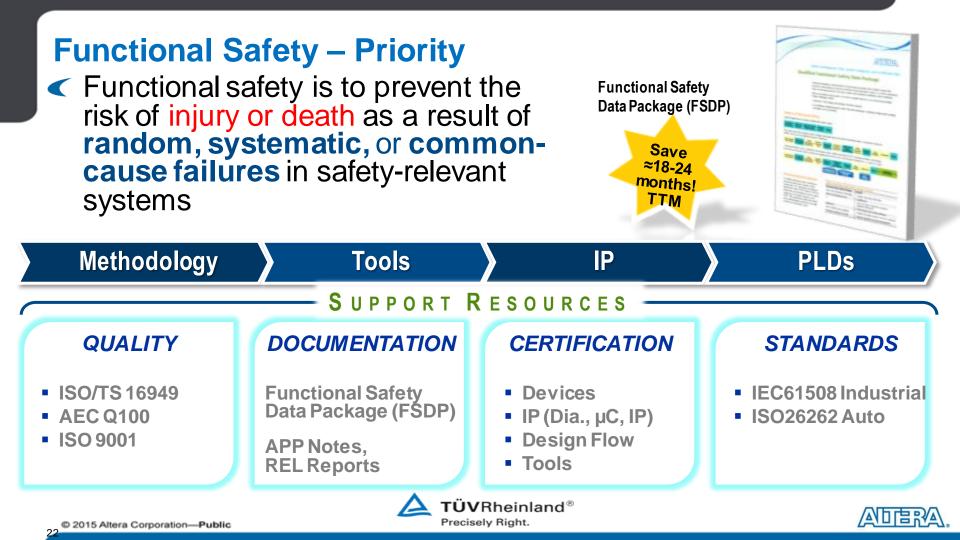


Audi & TTTech Select Cyclone V SoC for Audi zFAS Piloted Driving ADAS

Altera's SoC FPGAs integrate a **flexible fabric and CPU** that enable us to deliver leading-edge **communication safety and a vastly accelerated, yet very robust software integration** process to Audi on their way towards the vision of piloted driving. **FPGAs are well-suited to manage this type of complex computing and networking**. They still remain an **affordable and low-power solution**.

-Dr. Stefan Poledna, TTTech co-founder and board member

AudizFAS Block Diagram


- Why Altera
 - ISO 26262 Support
 - Functional Safety Data Pack
 - ECC on memory
 - Integrated transceivers
 - Communication to GPU
 - Highest logic density
 Automotive SoC-FPGA

Sources: <u>Green Car Congress</u>, Altera, TTTech Video: <u>Audi - Piloted Driving</u>, zFAS - All functions, one unit

AudizFASPCB

Technological Changes

© 2015 Altera Corporation—Public

The Need For Change

Moving to a smaller process node gets you

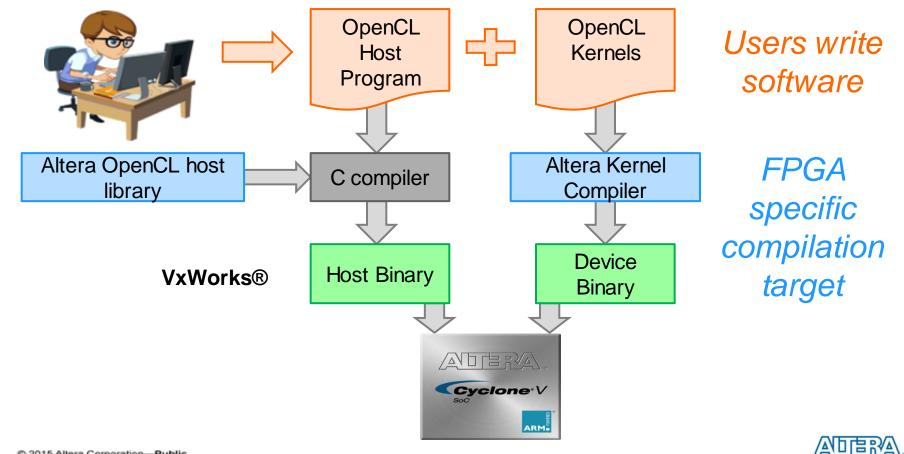
- More performance
- Better power efficiency
- Lower cost

These assumptions are no longer valid!

- Getting harder and harder to scale down process geometry
- Costs are rising
- < We need to find other ways to improve system performance
 - New ways of thinking
 - Not just "like the last version, but faster"

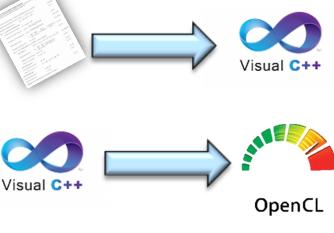
< Huge increase in processing while maintaining power envelope

 Microsoft whitepaper shows FPGA significantly more power efficient than GPU for Convolutional Neural Networks (CNNs)


New Ways of Thinking

Changes for system developers

- Move to heterogeneous solutions
- Re-think system partitioning
- Adopt new platform technologies
- < Changes for technology suppliers
 - Think about system programmability
 - Address new classes of developers
 - Develop system programming tools
- Example: Altera's OpenCL compiler
 - Bringing FPGA performance to software engineers


Programming FPGAs : SDK for OpenCL

OpenCL Design Approach for Dense Optical Flow

- Step 1: Whitepaper to C implementation
 - Pyramidal Lucas Kanade optical flow
 - Easy to check implementation
 - Prove C implementation
- Step 2: C implementation to OpenCL
 - **Optimisation stage**
 - Port linear C implementation to parallel OpenCL implementation
 - C model allows checking of OpenCL output
- Step 3: OpenCL to hardware
 - Final stage to target OpenCL to hardware
 - Dealing with board/video startup _

27

Example Design

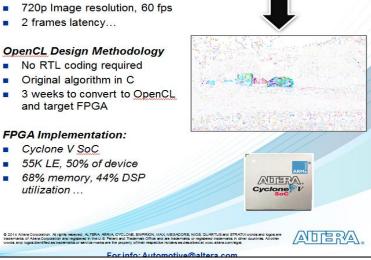
Lucas Kanade Optical Flow **Developed with OpenCL**

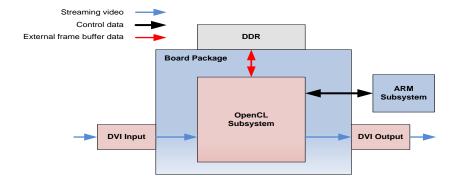
Applications:

- Pedestrian, vehicle, object tracking and recognition
- Collision avoidance, blind spot detection, AEB

Algorithm Performance:

- Dense flow
- 720p Image resolution, 60 fps
- 2 frames latency...


OpenCL Design Methodology


- No RTL coding required
- Original algorithm in C
- 3 weeks to convert to OpenCL and target FPGA

FPGA Implementation:

- Cyclone V SoC
- 55K LE, 50% of device
- 68% memory, 44% DSP utilization

Summary

- Rapid increase in electronic content of vehicles
- Processing requirements increasing rapidly
 - Existing architectural approaches can't keep pace
- C Design cycles getting shorter and shorter
- Need new ways of thinking to address these issues

Additional resources: Altera's OpenCL SDK: https://www.altera.com/products/design-software/embedded-softwaredevelopers/opencl/overview.html OpenCL Optical flow example: https://www.altera.com/support/support-resources/design-examples/designsoftware/opencl/optical-flow.html Microsoft whitepaper on CNNs in FPGA: http://research.microsoft.com/pubs/240715/CNN%20Whitepaper.pdf

Q & A

F

 $\mathbf{\Theta}$

